Quantum computing will upend encryption as we know it, making it critical to find post-quantum cryptography solutions. This emerging technology can compute a million calculations simultaneously, whereas a desktop computer works on one. Indeed, a 20-million-qubit computer could break Rivest-Shamir-Adleman (RSA) encryption (based on 2,048-bit numbers) in only eight hours — a feat that is impossible today.
Yet stolen encrypted data can be saved by threat actors, who are just waiting for the capability to decrypt it later. Unfortunately, the National Security Agency (NSA) says quantum cryptography (QC) and quantum key distribution (QKD) are "highly implementation-dependent rather than assured by laws of physics." Moreover, quantum-resistant tools aren't infallible or easy to implement. Explore the differences between quantum-resistant and quantum-proof cryptography and learn how to secure your systems now.
Quantum resistance refers to algorithms that withstand code-breaking efforts from quantum computers. These cryptographic algorithms are known as quantum-secure, post-quantum or quantum-safe formulas. Unlike current algorithms, quantum-resistant ones have much larger key sizes.
Some cybersecurity tools offer quantum-resistant products. But the Harvard Kennedy School Belfer Center for Science and International Affairs said, "it takes decades to develop quantum-resistant encryption and transition to a new security protocol." Indeed, the National Institute of Standards and Technology (NIST) recently announced four quantum-resistant cryptographic algorithms as part of its post-quantum cryptography standardization project.
However, nearly every device and platform relies on traditional standards. And the more modern public key infrastructure (PKI) took almost two decades to deploy. But quantum resistance doesn't mean quantum proof. Although experts are working on devising and vetting encryption methods resistant to quantum attacks, several barriers remain.
Replacing current cryptographic algorithms with post-quantum algorithms is necessary. But the process is neither simple nor foolproof. Quantum cryptography can reduce threats from sophisticated threat actors, but it still relies on mathematical formulas and credentials.
The barriers to quantum-resistant technology usage include:
Quantum-proof cryptography goes beyond resistance to attacks. It stops credential theft and unauthorized devices using quantum-proof chaotic information and ephemeral rotating symmetric keys. Unlike algorithm encryption, quantum-proof cryptography eliminates the need for mathematical formulas, stored PKIs and human intervention.
Many people use the terms quantum resistant and quantum proof interchangeably. However, resistant technologies haven't been validated or standardized. Until algorithm encryption testing can be verified, formulas pose security risks. NIST expects a standards draft by 2024, but integrated network, app and software solutions could be several years away. The only quantum-safe options are those that don't require math co-processors and algorithms.
Algorithms can be reverse engineered, and the human element always increases security vulnerabilities. However, a quantum computer can't exploit authentication tools that don't use algorithms. QWERX uses the chaos theory to generate keys that aren't stored or exchanged, making it an effective solution.
Post-quantum cryptography offers several benefits over quantum-resistant applications, such as:
With IBM promising a 1,000-qubit quantum computer by 2023, there is little time to waste. It will be too late if businesses wait until threat actors can access quantum computing technology. Crypto-agility can help you defend high-value data today and in a post-quantum computing environment. Contact us to learn more about the quantum-proof cryptography QWERX solution.
Jessica Elliott is a business technology writer specializing in cloud-hosted solutions and cybersecurity. Her work appears in U.S. News, Business.com and Investopedia.
Sources
MIT Technology Review - How a Quantum Computer Could Break 2048-Bit RSA Encryption in 8 Hours
National Security Agency/Central Security Service (NSA) - Quantum Key Distribution (QKD) and Quantum Cryptography (QC)
American Scientist - Is Quantum Computing a Cybersecurity Threat?
Harvard Kennedy School Belfer Center for Science and International Affairs - Quantum Computing and Cybersecurity
National Institute of Standards and Technology (NIST) - NIST Announces First Four Quantum-Resistant Cryptographic Algorithms
News from Science - IBM Promises 1000-Qubit Quantum Computer — a Milestone — by 2023